H(t)=-3t^2+12t+60

Simple and best practice solution for H(t)=-3t^2+12t+60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-3t^2+12t+60 equation:



(H)=-3H^2+12H+60
We move all terms to the left:
(H)-(-3H^2+12H+60)=0
We get rid of parentheses
3H^2-12H+H-60=0
We add all the numbers together, and all the variables
3H^2-11H-60=0
a = 3; b = -11; c = -60;
Δ = b2-4ac
Δ = -112-4·3·(-60)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-29}{2*3}=\frac{-18}{6} =-3 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+29}{2*3}=\frac{40}{6} =6+2/3 $

See similar equations:

| 7b+3=6b+4 | | 64+47+x=180 | | 6z+2z-3z-3z=16 | | 7x+9=10-2x | | 16x-32=-52 | | 4^x+12=52 | | -7(2x-5)+8x=4(x+5) | | 3x+11=-59+7x | | -1/2(3x-4)=11 | | 4h−3h=11 | | 5x+3=2x—9 | | -5(v+2)=7v-2+2(2v+5) | | 40x+20+2x-14=0 | | 3g+g+4g−8g+4g=4 | | 12x^2-3-5x=0 | | 10k-9k=9 | | 2p+8=p | | 16=8^-x+1 | | 27=3w+6w | | 4(y-1)=2y+8-2(-6y-1) | | x=2^64/x | | x=2^16/x | | 5s-4s=8 | | (x-21)^2-448=0 | | x=2^8/x | | x=2^32/x | | 7m-4m=3 | | 4j+3j=14 | | w/3-1.91=1.65 | | 5x+12x+3x=180 | | 2x+5÷17=8÷20-2x | | 8=9+r/9 |

Equations solver categories